Table of Contents

OVEIVIEBW. . . 2
Preparation 3
The Module EQItor 8
USING Properties 16
Maps and Boards 23
SIS . o 50
Game PIeCES 52
Prototype Definitions. 99
Game Piece Image Definitions 101
Decks and Cards 108
Generating Random Results 117
Additional Module COMPONENtS. 123
Pre-Defined Setups. 142
Help MeNUo 146
Additional TOPICS 149
Creating Module EXtENSIONS 153
Publishing Your Module 157
Updating a Module. 158
Best PractiCes. 161
TUutorials . . . o 162

VASSAL 3.1

Designer’s Guide

VASSAL 3.1 Designer(s Guide

Version 1.4, June 2012

Credits

VASSAL designed by Rodney Kinney

Designer(s Guide: Ed Messina (ed@crucible.cc, mycenae on the VASSAL forums)

Development Team: Rodney Kinney, Joel Uckelman, Brent Easton, Michael Kiefte, Tim McCarron
Testing: Thomas Russ

Website and Forum Management: Ben Smith

Comments on this document and suggestions for improvement are welcomed. Please contact Ed
Messina (ed@crucible.cc) with your comments and suggestions.

Programming skills are not necessary for creating fully functional VASSAL modules.

Overview

VASSAL is a free, open-source engine for playing board games by computer. VASSAL supports many
types of games, including war games, hobby games, card games, miniatures games, and even
board- based role-playing games. You can play opponents live on the VASSAL Server or a peer -to
-peer connection, play by email, play by forum, or play offline in hot seat or solitaire modes. There
are several hundred VASSAL game modules available for free, and more are being created all the
time.

VASSAL is supported on Windows, Mac OS X, Linux, and other platforms. Thanks to VASSAL’S Java
architecture, players on different platforms can play each other without regard to operating
system.

VASSAL was originally created in 1999 by Rodney Kinney. The name VASSAL comes from its
original incarnation as a tool to play online games of the classic Advanced Squad Leader, and was
originally called Virtual Advanced Squad Leader, or VASL. VASSAL now extends play to a much
wider range of games.

This VASSAL 3.1 Designerlls Guide explains how to create game modules and extensions using the
Module Editor. It is strongly recommended that you be familiar with the contents of the VASSAL

UserOs Guide before attempting to create new modules. This guide covers version 3.1.x of the
VASSAL Engine.

Because of VASSALUs easy to use interface, programming skills are not at all necessary for creating
fully functional VASSAL modules. In general, VASSAL modules are not “coded” or “programmed”,

mailto:ed@crucible.cc

but designed. However, programming skills will definitely be helpful if you plan to create custom
functionality or features that the standard VASSAL toolbox cannot handle.

For information on installing VASSAL and using it to play games, consult the VASSAL Userls Guide.

Preparation

The permutations and combinations possible in board games are nearly infinite: there are board
games with a single board, and those with multiple boards; games with many simple pieces and
games where the behavior of the pieces is very complex.

As a result, it0s up to you to select the proper tools needed for the game you want to make.
Supported Game Types

The world of board games is vast, and VASSAL can accommodate a huge number of games. VASSAL
supports any of the following game types:

» Traditional board games such as chess, checkers, Monopoly, or Risk.
* Hex-and-counter, block, and card-driven war games.

* Hobby games, such as Eurogames.

* Card games (traditional, collectible, or limited).

* Role-playing games that use a tactical map.
This list is not exhaustive; most any type of board-based game could be played on VASSAL.

VASSAL is also an excellent platform on which to playtest new game designs. A game designer has
instant access to a worldwide audience of playtesters. No physical game sets need to be printed or
distributed. It0s easy to add or modify features of the game during the process of game
development, and feedback can be obtained in real time.

Live and PBEM Games: One advantage VASSAL has over many Internet board game applications is
its support of live play. You can log into the VASSAL server and play opponents in real time. In
addition, VASSAL can also be used for Play by Email (PBEM) games. You can even switch between
the two for the same game. There are no differences in design between modules played by email
and modules played live, although some features may improve game play for one style or the other.

Platforms Supported: VASSAL games can be played on Windows, Mac OS X and Linux platforms.
Further, because of VASSAL[s Java architecture, players on different platforms can play against one
another without regard to platform. If you have a Mac, and a friend runs Windows, you can play
any module against one another.

Scoping a Game

One step that will make building your module much easier is proper preparation. Before you begin
the design process, it pays to take time to scope your chosen game. The complete design of a module
can take anywhere from a few hours to a few weeks or more. A little planning beforehand can
make your module easier to build, easier to create, and easier to maintain later.

At a minimum, every board game has a board and pieces. Everything else is negotiable.
Before even opening VASSAL, some questions to ask include:

* Rules: What are the rules of the game?

* Flow: Whatls the basic flow of play in the game? What0s the goal of the game? What are the
sides?

* Gameplay Requirements: Are random results needed for the game? How are these results
generated? If dice need to be rolled, what kind of dice are rolled, and how many? Are turns
tracked in the game? (For example, in many war games, turns are numbered; but in Monopoly,
turns need not be tracked.) Are there limited pieces, or unlimited pieces, or some mix of the
two? Is this a tactical game? If so, will players quickly need to determine the range between
counters? Will players need a private area for personal possessions, such as cards, tokens, or,
units?

* Graphic Requirements: What graphics will you use? How many maps does the game need?
How will the counter images be generated? Will you need to prepare charts or other play aids?

* Other Requirements: Is there any special functionality or rules in the game? Will VASSAL be
able to handle them?

Examples of Game Scope

Shown here are some simple examples of game scope. Evaluating the elements of your game in
detail will make it easier to determine the required components in your module later.

Preparation: Graphics Files in Your Module
Chess

Chess is played on a single board and has two players. There are 6 kinds of pieces, in two colors, in
limited quantities. There are no random results and turns are not tracked. The pieces have no
special abilities, but are deleted from the game after being captured.

Small Wargame
A. typical hex-and-counter wargame depicting a single Napoleonic battle may have the following
scope:
- Two players.
> A single map of the battlefield.
o Turns are tracked.
o Six-sided dice are used to resolve battles.
- Limited pieces—units are placed at game start in fixed locations directly on the game board.
o On Turn 5, the French player receives limited reinforcements; a place will be needed to keep

these reinforcements until they are ready to enter.

Monster Wargame

An ambitious game depicting the entirety of World War II in the Pacific may have this scope:

There are multiple large maps, depicting several theaters of operation.
There are multiple sides.

Players may deploy unlimited pieces, in several unit types and nationalities.
There are dozens of different pieces available to each side.

Game money is spent to construct and improve units. The money is in the form of paper
certificates that players exchange with the Obank.0 Players will need a place to keep their
unspent money and units before they deploy them.

Unit counters can be improved through training, or be depleted by damage in combat.

Leader counters will work differently from unit counters. Instead of being depleted, leaders are
killed (removed from the game).

Turns are tracked, and phases and segments are tracked in each turn.

The game uses six-sided and ten-sided dice to resolve game results.

Card Game

A card game might have this scope:

No map image is needed, but a common space is needed to place cards (a Otablel).
There are multiple decks, each accessible only to certain players.
Players will need a place to store their private hands and keep them secret from other players.

Card decks will be needed: two draw decks and a discard pile. Cards will sometimes need to be
facedown or face-up.

Turns are not recorded, but at the end of each turn, played Cards will be moved to the discard
pile. It would be nice to do this automatically.

The possibilities for a gamels scope are infinite. As a result, the burden is on you to determine how
best to assemble your module, using the tools at hand.

Graphics Files in Your Module

A simple module may have just a few graphic images. A more typical module would require dozens
or even hundreds of distinct images.

You need to create, scan, or otherwise acquire the graphics files to be included in your module.
Graphic file requirements for a module can include:

Game boards (for one or more boards)

Preparation: Graphics Files in Your Module

Game pieces (for counters, cards, markers, and other game tokens)
Charts (for tables and game aids)

Button icons

VASSAL has a limited set of graphics files available for use in building modules. These include a
small set of default icons, which you can use for buttons. In addition, you can create a limited set of
pieces, using NATO military symbols. See page 69 for more details.

Graphic File Support

VASSAL supports graphic files in SVG, PNG, GIF, and JPG formats. These are listed in order of
preference, with SVG and PNG files being recommended over the other types. SVG and PNG files are
the most scalable and reliable, GIF files less so, while using JPG files can cause graphics issues with
the display of your module.

Graphic Filenames
When working with graphic files, consider these points:

Unique Names: Even if graphic files come from different locations on your hard drive, once added
to your module, they are stored in a common folder. A graphic file added to a module that has the
same filename as an existing file will overwrite any existing file. Accordingly, you should make sure
all of your graphic files are named uniquely, in order to avoid overwriting existing files.

In some cases, such as when updating a module, overwriting existing files may be desired. See page
110.

Naming Convention: You should establish a standard pattern for graphic filenames. This will help
when finding, replacing, or updating your graphics files later on, particularly in modules with
many individual files.

For example, in a World War II game, with pieces divided by nationality, division, and unit type,
and potentially hundreds of graphic images, you might use this system to help organize the image
files:

(3 letter national abbreviation)(Division #)(Unit Type)(Identifier).png.
Examples of resulting filenames from this system could be:

* GerDiv1Inf3.png: A PNG image for German Division 1, Infantry Type 3.

* AmeDiv2Arm4.png: A PNG image for American Division 2, Armor Type 4. Of course, you can
decide on any naming convention that fits your module best.

Graphic Dimensions

The dimensions of your graphics are an important factor in determining the performance impact of
your module. A module with many sizeable graphics can cause significant performance delays on
player systems. In addition, large graphic images can be awkward to manipulate on many
computer screens.

While there is no upper size limit to the dimensions of graphics you can use in your module, but for
best results, it0s suggested you adhere to the following guidelines.

* Main Boards: A typical main board is usually 2000-3000 pixels in its longest dimension, and
generally under 5000 pixels maximum. If a board graphic must be larger, consider breaking up

the board into two or more smaller boards and re-allocating screen real estate. A very large
map can be awkward to view on a screen, and will have a major impact on system
performance. For example, if the physical game includes a game map, a space for cards, and
game tables printed on the map, you could consider moving the card space to a Map Window
and the game tables to Chart windows. (In addition, a module can include tools to enable
players to re-scale their view of the map on screen, which can mitigate the limitations of a small
map.)

* Other Boards: Depending on their purpose, other Boards are usually smaller than the main
Board. For example, a Private Window intended to hold a player(s private pieces could be much
smaller than the main Board, perhaps 500 pixels across.

* Pieces: Pieces, obviously, must be scaled to fit your maps. In particular, if you use a Grid on the
map, the pieces must be appropriately scaled for the Grid cells. Most pieces like tokens and
counters are between 50-100 pixels across. (Some pieces, like cards or money tokens, are usually
larger than ordinary pieces, as they are in physical games. Cards are usually between 200-500
pixels across.)

* Charts: Chart graphics are typically from 500-1000 pixels across. (There is no Zoom function for
most charts, so for best use, they need to fit easily on most computer screens at full size.)

Preparation: Help and Text Files

* Icons: Button icons can be any size. There is no upper or lower limit on dimensions, but 10-50
pixels is probably the most useful size. Test the visual quality of your icons so you can decide on
a common, compatible size for your buttons. Icon buttons need not be all the same size, but they
should be sized to be easily visible and accessible by your players.

Non-Rectangular Graphics

Most graphics used in games (for example, map, counter, and card images) are rectangular (or
square). However, your graphics need not be rectangular if you make use of transparency in
creating the files. Both PNG and GIF files support transparency.

For example, to make a circular image for a coin counter, create the coin image as an ordinary,
rectangular PNG file in your image editor. Any portion of the image outside of the circular coin
portion would need to be marked as transparent using the image editor. When the image is added
to a game piece, the counter will look like a circular coin, with no empty space around it.

Game Pieces can include an optional Trait, Non-Rectangular, which can make using non-rectangular
graphics easier for players. See page 55 for more information.

Performance Impact

A module is not limited by size on a disk; it is limited by memory space available in RAM only. In
general, the graphics used in a module are the biggest driver of memory usage, requiring 4 bytes
per pixel for each image that is currently being displayed. Gauge the performance impact of your
module accordingly.

For example: A map measuring 2000x3000 pixels is displayed with 20 counters on the map that
measure 50x50 pixels each.

The total RAM required equals (2000 x 3000 x 4) + (20 x (50 x 50 x 4)) = 24,200,000 bytes, or
approximately 254 MB of RAM.

Help and Text Files

Modules can include any number of help and text files. These files can be used for various
purposes, such as:

* To supply help on how to use the module.

* To give credits and acknowledgements for the design of the module.

* To provide rules, rules summaries, or important charts.
Such files will need to be created in the HTML or text file editor of your choice. It0s a good idea to

create the necessary files before designing the module. This will make the module design process go
more smoothly.

For more information on help files, see page 99.
Additional Tools
The following tools may be useful to have on hand when designing a module:
* An image editor application: An image editor will be helpful, to create graphics or manipulate

and crop scanned artwork.

e A text or HTML editor: A text or HTML editor will be needed for the creation of text or HTML
help files.

* A scanner: A flatbed scanner is useful for scanning game art, such as maps, counters and cards.

* A Java compiler (for module developers): In most cases, and for most games, custom coding
will not be necessary for the creation of a module, and no Java programming skills will be
needed. VASSAL is flexible and powerful enough to handle the vast majority of available games
without any coding skills. However, a highly automated module may require custom Java
coding. In this case, a Java compiler may be necessary for the creation of custom classes. A
discussion of such custom coding is beyond the scope of this guide.

The Module Editor

Youlre ready to begin building a module.
What is a VASSAL Module?

A VASSAL module is simply a set of compressed set of graphic, text, and other files, as well a
descriptive file (called a Build File) that describes how the other files are expressed in play. A
module file has the extension .vmod. There is no limit to the file size for a module, but modules
intended to be published to the Vassalengine.org site may be up to 75 MB in size.

All of the files in a module are compressed using ZIP compression. As a result, anyone can examine
or retrieve the files that comprise any module by simply unzipping the module, using any ZIP
utility. (Unzipping a .vmod file is NOT necessary to play it.)

As VASSAL itself is open-source, so are VASSAL modules. Modules are freely editable in the Module
Editor, even ones that have been created already. (VASSAL includes no native way to lock or
encrypt a module, or otherwise prevent a module being opened in the Module Editor.)

See Module File Structure, on page 102, for more information on the BuildFile and other module files.
Module Creation Overview

VASSAL is designed to be a toolkit for the creation of board games, and like any toolKkit, is extremely
flexible. As such, itOs important to remember that there is no one right way to proceed when
creating a module. The process given here is a guideline drawn from experienced designers. Two
different designers who design modules for the same game in VASSAL are likely to produce very
different results.

In general, a VASSAL module is not “coded” in the traditional sense. Because of the graphic user
interface of the Module Editor, module creation does not require any programming skills. Someone
with no programming experience can design a simple, functional module in a very short time.

However, VASSAL module creation can entail familiarity with particular programming concepts ,
such as event sequencing, property comparison, manipulation of text strings, unit testing, and other
related notions from the world of software development.

In general, the process of creating a new module follows these stages:

I. Basics: Create the module and specify the basic settings. Choose the settings (and a board) for at
least one map. Save the new module.

Al Development: Create and define the modulels other game boards, Game Pieces, and other
controls required for game play. Additional controls can include turn counters, map buttons like
Zoom and Overview, dice rollers, game charts, scenarios, or other components. (This stage will
require the huge majority of development time, and may require multiple saves and restarts of
the module to see your changes take effect.)

BL. Testing: Test your module. Check gameplay to make sure it works the way you want it to. Itls a
good idea to play a few complete games to make sure you haven0t left anything out. If not,
return to Stage III and adjust what(s needed.

IV. Publication: Publish your module to the Vassalengine.org web site, or distribute it in some other
method.

Using the Module Editor

The main utility for building modules is the Module Editor, an easy -to-use tool with a graphic
interface. In the Module Editor, you specify each component, and can assign values, settings, and
files to the component.

You install the Module Editor when you install VASSAL, along with the VASSAL Player, the Module
Manager, the Extension Editor, and other tools. Youlll be using the Module Editor in conjunction
with the Module Manager. For complete VASSAL installation instructions and directions on how to
use the Module Manager, consult the VASSAL UserQs Guide.

The Module Editor looks and operates the same on all platforms: Windows, Mac OS X, Linux, and all
other platforms.

Launching the Module Editor
To launch the Module Editor, in the Module Manager, select File | New Module.
The Module Editor Window
The Module Editor window includes a menu bar, a Toolbar, and Configuration window.
The Module Editor: Using the Module Editor
The Menu Bar
The Module Editor menu bar has the following menus:

* File: The File menu includes:

0. New Game: Starts a new game with the open module.

o. Load Game: Loads a saved game or log file.

0. Save Game: Saves a game in .vsav format.

0. Close Game: Closes the current game.

0. Begin Logfile: Begins a log file in .vlog format.

o. End Logfile: Closes an open log file in .vlog format.

o. Save: Saves the current module.
0. __ Save As...: Saves the current module under a new name.

= Edit: The Edit menu includes Cut, Copy, Paste, Move, Properties, and Translate. These
duplicate the functions from the Configuration window. See Configuration Window,
below, for more information.

= Tools: The Tools menu includes Create Module Updater and Update Saved Games.
= Help: The Help menu includes:
p- Help: Displays VASSAL HTML help.

0. Userls Guide: Shows the VASSAL User Guide (in PDF format)
0. Component Help: Displays HTML help for the selected module component.
0. Quick Start: Displays a short text file for VASSAL newbies.

0. About Module: Displays the module splash screen, with information about the module name
and version.

The Module Editor Toolbar

10

The Module Editor Toolbar includes the following buttons:

» Save, Save As: Duplicates the items of the same names on the menubar File menu. As with any
other application, save your work often.

* Help: Click Help to display the VASSAL HTML help.

OO0 0 VASSAL Module Editor
EIL [N
¥ @ [Module]
» G [Help Men
" [Definition of Pla
£ [Global Options]
¥ @ Main Map [Map Window]
3 [map Boards]
~ [Stacking options]
" [Image Capture Tool]
7 [Mouse-over Stack Viewer]
E3 [Global Properties)
(3 (Additional Selection Highlighters]
 [Last Move Highlighter]
¥ @ [Game Piece Image Definitions]
(&3 [Named Colors]
» [[Font Styles]
3 (Game Piece Layouts)
& [Global Properties)
&l [Game Piece Prototype Definitions]
[[Game Piece Palette)
£ [Translations]

Menu Bar
The Configuration Window

Most of the effort of module creation is performed in the Configuration window. Any instructions
given here refer to using the Configuration Window to create or configure module components.

The Configuration window browser displays the modules components as nodes, in a hierarchical
tree view.

Each node displays a folder icon. Node types appear in brackets []. The component name precedes
the node type. For example, a node labeled Japanese Units [Game Piece Palette] would indicate a
Game Piece Palette component named Japanese Units.

Click the arrow next to each folder icon to toggle the expanded folder view and view the various
sub -components of the folder. Click the arrow again to contract the node.

You can perform any the following operations on components by right clicking on the component
node and selecting the operation from the menu.

[Module]
Node

The Module Editor, showing the Configuration Window, Menu Bar, and default nodes for a
new module.

The Module Editor: Using the Module Editor

11

Properties: Enables you to choose the settings for the selected component. For components that
have already been created, you can access the Properties dialog by double-clicking on the
selected component.

Translate: Enables you to set translations for the component into a language of your choice.
VASSAL is not localized; you must supply the translations for a given module component. See
Translations on page 104 for more information.

Help: Displays the VASSAL online help for the component.

Delete: Deletes the component. (There is no deletion confirmation prompt, so be careful.) You
can also press the Delete key on your keyboard.

Cut: Cuts the selected component pasting. A cut and paste will relocate the component.
(Alternately, press Ctrl-X on your keyboard.)

Copy: Copies the selected component for pasting. A copy and paste will make a new copy of the
component. (Alternatively, press Ctrl-C/Cmd-C on your keyboard to Cut.)

Paste: Pastes a copied or cut component. You can only paste a component to the appropriate
place in the tree (like to like). For example, you could copy and paste a Game Piece from one
palette to another palette, or to an At-Start Stack, but could not copy and paste the Game Piece
to a Turn Counter. (Alternatively, press Ctrl-V/Cmd-V on your keyboard to Paste.)

Move: Moves the component up and down in the tree view. Used to organize and order the
components in a logical sequence. (Order of components in the Configuration Window will also
determine the left-to-right Toolbar order of any buttons associated with the components. See
page 89 for more information.) After selecting Move, you are presented with a dialog to specify
a new location for the component in the tree view.

Add <Sub-Component>: Many components include context menu, giving component-specific
options, accessible through a right-click. For example, the context menu for a [Map Window]
component includes a set of options allowing you to add map-specific components, such as a
Line of Sight Thread. When created, new sub-components will be shown at the bottom of the list
of the nodels sub-components. (Some of these options may themselves have further options.)

The [Module] Node

You create new module components by right clicking on the [Module] node, the topmost node in
the Configuration Window. The node is labeled with the module name and contains all the other
nodes.

Using the menu from this node, you can create any of the following new components:

12

Action Button

Charts Window

Dice Button

Game Piece Inventory Window
Game Piece Palette

Game Piece Prototype Definition
Global Key Command

* Imported Class

* Map Window
e Multi-Action Button

¢ Notes Window

» Player Hand
* Pre-defined Setup

e Private Window

¢ Random Text Button

» Symbolic Dice Button

e Toolbar Menu

e Turn Counter
The Module Editor: Creating a New Module
Each of these components is discussed in detail in later sections.
Creating New Components

When creating new components, create just a few of each type of component that you need, and
test them first. If you find that you have made a mistake, or that you need to rework pieces or
components, you will not have to go back and correct possibly many examples of the problematic
components. For example, if you are creating Game Pieces, create a few Game Pieces first to make
sure they function as you intend, and then create the others as needed. (Prototypes can make this
process more efficient. See page 67 for more information.)

Copy and Paste

Copy and Paste can be an extremely useful tool when creating or editing a module, as it enables you
to create similar components very quickly. Most components in a module can be duplicated by copy
and paste. You can then edit the duplicate to create a similar component without having to adjust
all the settings.

For example, you may need to create two Map Windows. Each will have similar attributes, differing
only in the Board used for each. If you were to create each one individually, you would need to
specify the attributes one at a time for each Map Window. However, you could create the first one,
adjust the settings and options for the window to what you need, right-click to copy it, and then
paste it into the Configuration Window. You could then adjust the settings for the pasted one to
individualize it (such as including a new board graphic.) This would save a great deal of time.

The Module Editor will only permit pasting to the appropriate area of the Configuration Window: a
Map Window must be pasted into the top-level node of the module, Game Pieces may only be
pasted into Game Piece Palettes or At-Start Stacks, and so on.

You cannot cut/copy and paste components between modules.

Creating a New Module

13

To create a new module,

1. In the Module Manager, select File | New Module. The Module Editor opens with a new, empty
module with a set of default nodes. In addition, the VASSAL Player loads the game so you can
see your changes implemented.

Saving a Module
There are two types of saves.
» Save: As with any application, save your work as often as possible. Click the Save button in the

menu bar to perform a save.

» Save As: It0s generally good practice to save renamed copies of your module periodically, as
some modifications can be difficult to remove. Use the Save As button to save interim copies of
your module, under a new filename, before making major edits to your module.

Editing a Module
After a module is created, you can save it at any time, and come back to work on it later
To edit a module,

1. In the Module Manager, select the module you wish to edit and pick Edit Module. The Module
Editor opens the selected module for editing.

When the Module Editor is open, the VASSAL Player will also load your game in Edit mode. This will
enable you to test your module as you create it. Unlike an ordinary game, when in Edit mode, you
will not need to log in to the module to test it in the Editor. In the Module Manager, pick File | New
Game to start a game.

Refreshing the Editor

As you make changes to your module, many components you edit will reflect any changes you have
made to them in real time.

You will be able to see immediately how the edited component looks or works in the VASSAL Player.

Some modifications, such as new board graphics, sound files, or changes to Prototype Definitions,
may not be immediately reflected in the VASSAL Player. As well, the names of some components,
such as Game Piece Palette tabs, Charts, and Irregular Grid Regions, may be truncated after you
create them. This truncation is merely cosmetic. Any of these additions will require you to re-start
the Editor in order for them to be displayed correctly in the VASSAL Player.

The Module Editor: Module Basic Settings

As a result, a good habit is to save your work, close, and then re-launch your module after you have
made any major changes, particularly after adding or editing graphics files. Click Save , and then
close the Configuration Window. In the Module Manager, right-click your module and pick Edit
Module to re-load the module in the Module Editor. Any changes you have made to graphics or
components should be fully functional after a restart.

14

In some instances, you may edit a module but, frustratingly, the changes wonlt show up even after
you refresh the view.

This can occur in games that load a Pre-Defined Setup at game start—changes to a module will not be
reflected in a Pre-

Defined Setup. See page 110 for more information.
Default Module Nodes

By default, a new module includes the following nodes. Not all of these nodes need be used in a
given module.

* [Module]: Includes all other nodes, and used to create module-level components.

* [Help Menu]: Customize the module help menu.

* [Definition of Player Sides]: Define optional player Sides.

* [Global Options]: Define global module settings for all players.

* Main Map [Map Window]: The default Map Window, which usually contains the gamels main
board. May be renamed, modified, or deleted. However, a module will usually include at least
one Map Window.

* [Game Piece Image Definitions]: Create optional game image layouts.

* [Global Properties]: Define optional module-level Properties.

* [Game Piece Prototype Definitions]: Define optional module Prototypes.

* [Game Piece Palette]: The default Game Piece Palette for generating pieces.

* [Translations]: Configure text strings to translate your module.
You can now enter the modulels basic settings.
Module Basic Settings
Module basic settings are displayed for the modulels entry in the Module Manager.
Game Name

Name the module whatever you like. It should correspond to the name of the game. (The module
name, which is displayed in the Module Manager, is distinct from the module filename.)

Version Number

Module version number is the number you assign to the current edition of the module. This must
be a numeric value. Module Version Number serves these purposes:

» Helps the players to identify the module version they currently are using.

* Acts as a check to make sure that games are created with the same version of the module.

* Ensures the Saved Game Updater Tool can apply attributes from a game created with later
version of the module to an earlier version.

15

Description

The module description is displayed for players in the Module Manager. The description should be
brief—no more than a line or so.

To set the module’s basic settings,

1. In the Configuration Window, double-click the [Module] node. (By default, this is labeled
Unnamed Module, but the name will change after the module is saved.)

2. In the dialog, enter values for Game Name, Version Number and Description.

3. Click Ok.
The Module Editor: Module Basic Settings
Suggested Module Filename Convention

When saving, choose a filename for the module. A suggested filename convention is <game
name>_<version number>.vmod.

For example, clue_1.3.vmod, would indicate version 1.3 of a module for Clue.

Whatever filename you choose, it Os recommended to always include version number in the
filename, so players can quickly tell which version of the game they have without having to open
the file.

Some older modules use .zip or .mod as a file extension. However, modules made for VASSAL 3.1 and
later must always be given the extension .vmod.

Next Steps

Now you can add other module components, like Map Windows, Game Pieces, and other items.
Depending on the scope of your game, some of these components may be optional for your game.
See the succeeding chapters for more information on these components.

Using Properties

A Property is an attribute of a module component (or the module itself), simply consisting of a
name and a value.

Properties are used by VASSAL when executing commands and for determining details of the
current game state or components.

Using Properties is an important part of automating your module.

Properties do nothing by themselves. They need to be evaluated by other VASSAL functions or
components. Properties can be used as selection criteria for certain pieces, to track game quantities
or game events, and for many other purposes.

Types of Properties

16

Properties come in two types: system Properties, and custom Properties.

* Many VASSAL components, such Game Pieces, Decks, Maps, Boards, Dice Rollers, and Turn
Counters, already have Properties defined for them. These are called System Properties. System
Properties for components are listed in the component descriptions in later sections.

* In addition, you can create and define custom Properties for Game Pieces, Map Windows, Zones,
and the module itself. Examples of custom Properties include Global Properties, Dynamic
Property Traits, and Marker Traits. Information on using component Properties, Traits, or
Global Properties will be found in their descriptions in this Guide.

Property Names

System Property Names: The names of System Properties are already defined for module
components. For example, all Game Pieces have a system Property named CurrentMap, the value of
which is the name the Map where the Game Piece is currently located. System Properties cannot be
renamed. System properties for module components are defined in this guide in the sections
describing those components.

Custom Property Names: The name of a custom Property you define, such as a Global Property,
Dynamic Property Trait, or Marker Trait, must be composed of alphanumeric characters (A- Z, 1-9),
and may contain a space (). The name cannot contain special characters or punctuation marks. To
avoid unpredictable behavior, the name of a custom property should not duplicate the name of a
System Property.

Property names are case-sensitive. For example, PowerLevel is not the same Property as
powerLevel.

Property Values

System Property Values: System Properties automatically take their values from the game state.
You wonl t need to assign values to System Properties manually (in fact, you cannot do so). Their
values will depend on the condition they describe. For example, the value of the CurrentBoard
Property for a Game Piece is the name of the current Board where the piece is located. If you
moved the piece to a new Board, the value of CurrentBoard for that piece would change
automatically to the name of the new Board.

Custom Property Values: You may assign values to custom Properties. You can assign any of the
following types of values:

*» A string of text: By default, and unless defined otherwise, Properties will accept a string of text
as a value. Unless noted otherwise, this is the default type for most Properties. The value of a
text Property can include a space () character (for example, Foo Bar).

* Boolean value: Some Properties are simply checked to see if they are logically true or not. (These
are called Booleans.) A Boolean Property will have a text value that can be either Oyes/nol or
Otrue/falsel (not capitalized).

* Numerical: The value of a numerical Property is limited to positive or negative integers (or
zero), such as -5, 1, 0, -23, 134, and so on. You can designate some Properties (such as Global and
Dynamic Properties) as numerical when you create them.

17

As with Property Names, Property values are case-sensitive.

Displaying Properties: Game Piece property values are generally invisible to players unless you
choose to display them, using a Trait such as Text Label or Layer.

Comparing Properties

You create Property expressions to determine if a particular game condition is true. For example,
since a System Property named LocationName is used to record a piecels current location, we could
check the value of this Property to determine if the piece is currently situated in Hex 1212.

Using Properties: Comparing Properties

Property expressions are found in many components of a module, and you set them in the dialog
boxes for those components when you choose the component settings. Expressions are also
sometimes called filters, because they filter out situations where the comparison does not apply.

An expression must use one of the following symbols (known as operators) to evaluate the
relationship between two values.

Traditionally, a space character () is placed between the Property, the operator, and the value, to
improve legibility. However, spaces between them is not required. (CurrentTurn >= 5 is the same
expression as CurrentTurn>=5.)

The following table shows each valid operator, the meaning, and under what conditions a
comparison using the operator will be true.

Operator Meaning True if...

= Equals The two values on
either side are the
same.

I= Is Not Equal To The two values are not
the same. (The

exclamation point (!) is
known as a Obang(.)

=~ Regular Expression The Property value is
equal to any one of
several values, which
are separated by a

pipe () character. See Regular
Expressions, below, for
more information.

18

) character. See Regular
Expressions, below, for
more information.

The value on the left
side is larger than the
value on the right.
Applies to Numerical

Properties only.

The value on the left
side is larger than or
equal to the value on
the right. Applies to

Numerical Properties
only.

The value on the left
side is smaller than the
value on the right.
Applies to

Numerical Properties
only.

The value on the left
side is smaller than or
equal to the value on
the right. Applies

Types of Expressions

Regular
(Negation)

Expression The Property value is

not equal to any one of
several values, which
are separated

by a pipe (

Greater Than

Greater Than Or Equal

To

Less Than

Less Than Or Equal To

19

Typically, expressions are used in a module component to determine the conditions under which
the effects of the component should apply. There are several kinds of expressions, which include:

» Simple expressions, which check the Property to see if matches a single value.

* Regular expressions, which check the Property for any of several values.

* Comparing the value of the Property to the value of another Property.

* Indirect comparisons, where one Property name contains the name of another Property.

* Joined comparisons, which can check for multiple conditions.
When creating comparisons, remember that Property names and values are case-sensitive.
Simple Expressions
To check if the value of a Property matches a single value, use a simple expression. For example:

* PieceName = Paratrooper (text)
e CurrentTurn = 10 (numerical)

¢ ObscuredToOthers = true (Boolean)

In these comparisons, the value on the right side is called a literal, because the text, number, or
condition must be literally true—as written—for the comparison to be true.

Regular Expressions

A regular expression checks if a Property has any one of several values. A regular expression is
denoted using the =~ operator. Surround the name of the Property on the left side with $-signs, and
separate each value by a pipe character (|). There must be no spaces between pipe-separated
values. For example:

0 CurrentPlayer =~ Blue | Green | Red (checks if the Blue, Green or Red player is the current player)
*Using Properties: Game Piece Properties™

You can also negate regular expressions by using !~ instead of ~=.

Comparing a Property to Another Property

On occasion, you may need to compare the value of one Property to the value of another. In this
case, surround the name of the Property on the right side of the operator with $-signs (such as
$PieceName$) to indicate that the Property with that name should be checked for its value. (Do not
use $-signs in the left side of the expression. The left side of the expression is always treated as the
name of a Property.) Examples:

* PieceName = $ActivePiece$ (checks if the name of a selected piece is the same as the value of the
$ActivePiece$ Global Property.)

e CurrentTurn = $2d6_result$ (checks if the current turn is the same as the random roll of 2 dice.)

In these comparisons, the Property on the right, in $-signs, is called a variable, because its value may

20

vary.
Indirect Comparisons

In an indirect comparison, one Property name contains the value of another Property. Set the name
of the Property in the left side by using $-signs. For example, if the Property Example has a Property
name as a value, then to compare the value of the Property contained in Example to a value, use $
on the left side of the operator.

* $Example$ = 2

Use $ (dollar) signs within the name of a custom Property to indicate that the Property contains the
name of another Property. For example, in a game with Red, Green and Blue players, the value of
the $PlayerSide$ Property can be Red, Green, or Blue. Using the Send to Location Trait, we want to
send a card to the current active player0s private window (each named Red_Home, Green_Home,
Blue_Home). For the Traits destination we could use the Property $PlayerSide$_Home. When
evaluated, the value of $PlayerSide$ would be substituted in the string, giving a final value for
$PlayerSide$_Home of Red_Home, Green_Home, or Blue_Home.

Joining Expressions

You can check for multiple conditions using AND (&&) as well as OR (||) to join expressions
together. For example, to check if a

Game Piecels current board was called Battlefield, and that the piece was an Artillery piece, we
would evaluate:

CurrentBoard = Battlefield && PieceName = Artillery

* In an AND comparison, both compared Properties must be true for the entire expression to be
true.

* In an OR comparison, only one of the compared Properties must be true for the entire
expression to be true.

Complex expressions with multiple joins are possible. (Parentheses and brackets are not
supported.) Joined expressions are evaluated from left to right, with OR (| |) operators evaluated
before AND (&&).

For example,
CurrentBoard = HQ | | CurrentBoard = Battlefield && PieceName = Artillery | | PieceName = Tank

This would evaluate to true if the piece were on either the HQ or Battlefield maps, and was either
an Artillery or Tank unit. If the piece were on the HQ map, but was an infantry unit, it would
evaluate to false.

Game Piece Properties

Each Game Piece has its own set of System Properties (each with a name and a value) that can be
used for identification by various components.

21

When looking for the value of a Property of a Game Piece, Global Properties provide the default
values. If the Property is not defined on the Game Piece itself, the value will come from a Global
Property attached to Zone occupied the by piece, the Map to which it belongs, or the Module
overall, in that order.

Traits on a Game Piece search for Properties in the following order:

1. Within each Trait on itself in order from the Trait at the bottom of the list, up to the top Trait.
2. Zone Global Properties defined for the Zone where the Game Piece is currently located.
3. Map Global Properties defined for the Map where the Game Piece is currently located.

4. Global Properties defined at the module level.
A Game Piece cannot directly access:
Using Properties: Message Formats

* Properties on another Game Piece.
» Zone Global Properties on a Zone that the Game Piece is not currently located in.
* Map Global Properties on a map that the Game Piece is not currently located in.
For most components, system Properties are hardcoded as part of the VASSAL engine. However, for

Game Pieces, you can create entirely new Properties using the Dynamic Property, Marker, and
Property Sheet Traits. See Game Piece Traits on page 42 for more information.

Message Formats

Many Traits and module components enable you to customize the message that is displayed to
users in the Chat Window when game events take place. A Message Format is a formula for creating
such a message to players. Message formats are highly customizable and usually include Properties
as variables.

For example, the Dice button control includes a message indicating the result of the dice, which is
specified in Report Format. The default message for the Dice button is $name$ =
$result$*<$playerName$>. This formula indicates the format of the message to be displayed.

* $name$ is evaluated for the name of the Dice button.

* $result$ is the results of the roll.

* $playerName$ is the name of the player who clicked the button.

If Bill clicked a Dice button named 2d6, and the result was 5, the message displayed in the Chat
Window would be: 2d6 = 5*<Bill>.

Constructing a Message Format

In a Message Format, any word surrounded by $-signs represents a variable, the value of which will
be determined when the message is generated during play. When constructing a Message Format
for a component, click the Insert drop-down menu for a list of available variables for the Message
Format. Selecting one of the variables from the menu will insert it at the current cursor position.

22

Words not surrounded by $-signs will be treated as plain text. This enables you to create plain-
language messages using a combination of text and variables.

When a Message Format is used in conjunction with a Game Piece, then any Properties of that
Game Piece can be used in the Message Format. See page 44 for more information on Game Piece
Properties.

Maps and Boards

A board is a playing surface on which pieces are moved. Boards are displayed in map windows. By
default, a module has one main map window, but is possible to have multiple map windows, and
pieces can be moved between them.

Some games have multiple boards, and a single one is selected at game start to play on. Other
games include multiple board segments, which are used to build the complete game board at game
start. Multiple maps can come in handy to make better use of screen 0 real estate.0 For example, in
a physical game, pieces, cards and other items might all be stored on the main game board. But in a
VASSAL module, you can have a separate Map Window for the main board, another specifically for
a deck of cards, and others to store playersl personal items like tokens. You can also add buttons to
toggle visibility of these windows, so they can be hidden from view when not in use.

Types of Map Windows
The following types of map windows are available.
Standard Map Window

The standard Map Window holds one or more boards to play on. By default, a new module includes
a [Map Window] node called Main Map, but you can change the name of this default, as well as add
any number of new Map Windows.

Private Window

A Private Window works just like a regular Map Window, and has all the same options, but includes
an additional control to specify which Sides can access the window. Only the owning Side (or Sides)
will be able to access the window. You can further specify whether pieces in the Private Window
are visible to other Sides. A Private Window can be used for players to store personal items needed
in the game, like units, cards, or money.

Player Hand

A Player Hand is like a Private Window, but specifically intended for use to store a player(s
personal hand of Cards. Items placed in a Player Hand Window will be displayed side by side,
horizontally, and will not stack. The owning Side can manipulate Cards (such as turning them face
up or face down), and drag new pieces to the Hand. Like a Private Window, you can specify which
Sides can access the Player Hand, and whether items in the Player Hand are visible to other players.

To make best use of Private Windows or Player Hands, you will need to add Sides to the game. See
page 37 for more information on adding Sides.

23

Map (Chart)

A Chart can be defined as a Map Window. This is useful if the players need to interact with the
chart in some way, such as to move a tracking piece to record the current turn, player income, or
victory points. See Charts on page 84 for more information on creating a Map Window as part of a
Chart.

Maps can be hidden from view, which can be handy if the pieces on the map are performing some
automated function, such as drawing from a Deck of Cards that sends Cards to players automatically.
For more on creating hidden maps, see Hiding Toolbar Buttons on page 90.

Map Window Attributes
Each map window may include these settings.
These settings apply to Private Windows and Player Hands only:

* Belongs to Side: Click Add to add the name of a Side. Only Sides on this list will have access to
this Private Window or Player Hand. You may add multiple Sides to the list of owners to enable
multiple players to access the window. Once these Sides are set, players may not change the list
during a game.

* Visible to All Players: If selected, non-owning players will be able to view the contents of
Private Window or Player Hand.

* Use the Same Boards as This Map: A Private Window or Player Hand may be set to
automatically use the same boards as another map window. If left blank, then the Private
Window will use its own set of boards.

The rest of these settings apply to all Map Windows, Private Windows, and Player Hands.

* Map Name: The name of this Map Window. Each Map Window in the module should have a
unique name.

Maps and Boards: Map Window Attributes

* Mark Pieces That Move: If selected, then any Game Pieces with the Mark When Moved Trait
will be marked when they are being moved in this Map Window. You can also allow players to
set this option in their Preferences.

* Horizontal/Vertical Padding: The dimensions of the blank space, in pixels, surrounding the
boards in the window.

* Background Color: The color to use in the blank space padding.

* Can Contain Multiple Boards: If selected, when setting up a new game, the player is prompted
for how to arrange the available boards (those assigned to the Map Window) into rows and
columns. Useful if the gamels main board is comprised of sections that may be arranged
differently for different games.

* Border Color For Selected Counters: The color of the border to draw around pieces that have
been selected.

* Border Thickness For Selected Counters: The thickness of the border, in pixels, drawn around

24

pieces that have been selected.

* Include Toolbar Button To Show/Hide: By default, a Map Window is automatically visible
when a game begins. However, if this is checked, then this Map Window will not be
automatically shown. Instead, a button to show or hide this window will be added to the Main
Controls Toolbar. You can specify these settings for the toolbar button:

0. Toolbar Button Text: Text of the optional Toolbar button.

o. Toolbar Tooltip Text: Tooltip of the optional Toolbar button.
o. Toolbar Button Icon: Icon for the optional Toolbar button.
0. Hotkey: Keyboard shortcut for the optional Toolbar button.

In VASSAL 3.1.18 and later, entry boxes to specify Toolbar button text, tooltip, icon, and hotkey will
not be available until the module is saved, exited, and then reloaded. After exiting and reloading the
module, and reopening the map window dialog, you will be able to specify values for these settings.

* Auto-Report Format For Movement Within This Map: A Message Format that will be used to
report movement of

pieces completely within this Map Window: pieceName is the name of the piece being moved,
location is the location to which the piece is being moved (in the format specified above),
previousLocation is the location from which the piece is being moved. (Note that this message will
only be triggered by drag-and-drop piece movement, but not by the Send to Location Trait.)

* Auto-Report Format For Movement To This Map: A Message Format that will be used to
report drag-and-drop

movement of pieces to this Map Window from another Map Window: pieceName is the name of the
piece being moved, location is the location to which the piece is being moved (in the format
specified above), previousLocation is the location from which the piece is being moved,
previousMap is the name of the map from which the piece is being moved. (Note that this message
will only be triggered by drag-and-drop piece movement, but not by the Send to Location Trait.)

* Auto-Report Format For Units Created In This Map: A Message Format that will be used to
report pieces that are

dragged to this Map Window directly from a Game Piece Palette: pieceName is the name of the
piece being moved, location is the location to which the piece is being moved (in the format
specified above).

* Auto-Report Format For Units Modified On This Map: A Message Format that will be used to
report changes to

pieces on this map: message is the text message reported by the Report Action Trait of the Game
Piece being modified.

* Key Command to Apply to All Units Ending Movement on This Map: You can specify an
optional keyboard shortcut that will be applied to any pieces that are moved on this map. Use
this box to force a Game Piece to execute the same command every time it is moved.

25

Attachment

By default, the first Map Window in the Editor (Ithat is, listed topmost in the Editor window) will be
shown attached to the module main controls and Chat Window. This is usually the Main Map. All
other Map Windows will be detached from the toolbar.

Players can control this on an individual basis by de-selecting the Use Combined Application
Window checkbox, under Preferences. Deselecting this will cause all windows to be shown detached
from the module main controls for that player.

Maps and Boards: Boards
Boards

Once youlve created a Map Window, you must add one or more Boards to it. If you attempt to save
a new module without assigning at least one Board, the Module Editor will prompt you to assign
one.

The [Map Boards] Node

Some games include multiple boards (or board segments). The beginning of such games consists of
either selecting a board to play on, or laying out the board segments for play, sometimes in rows
and columns.

If the Can Contain Multiple Boards option is checked for the Map Window, and multiple boards
are defined for it, a player launching a module is presented with a dialog prompting for a board
selection, or for board layout.

If the game includes a random map layout, you may wish to create Map Tiles using the Deck function.
See page 77 for more information.

The [Map Boards] node settings control the dialog presented for multiple boards. The player is
prompted to select the Boards used in the game and their arrangement. (To enable the selection of
multiple Boards, when defining the Map Window, select Can Contain Multiple Boards.)

If the Map Window only includes a single board, the settings in this node may be ignored.

* Dialog Title: The title of the dialog window for choosing boards on this map.

* "Select Boards" Prompt: The prompt message in the drop-down menu for selecting boards.
(For example: Choose map sheets for the game.)

* Cell Scale Factor: The relative size of the boards displayed in the dialog compared to their final
size during play.

* Cell Width: The width of a cell when no board has been selected.
* Cell Height: The height of a cell when no board has been selected.

* Select Default Board Setup: Click to choose a default set of boards. When a default has been
set, the dialog will not be shown to players when a new game is begun. Instead, the game will
always be started with the boards you select. If you click this button and then clear the boards,
then dialog will again be shown at the start of each game.

26

Boards

When creating a board, you can choose to define a solid color field of any dimension, or you can
use an imported image, such as a scan of a game board.

B Board 1

Board name: Board 1

Board image: Select |MEDI png

|_| Reversible:

| Ok I Cancel I Help ‘

* Board Name: Identifying name of the board.

* Board Image: Click Select to select a board image.

Board Width/Height: Dimension, in pixels, of the board if no image is used.

* Background Color: Color of the board, if no image is used.

Large board image size can have an impact on system performance. See page 8 for more information.
Creating a Map Window
To create a Map Window and one or more boards,

1. Right-click the [Module] node and pick Add Map Window. The Map Window is added to the
Configuration window.
In the Map Window dialog, specify the window settings.
In the Configuration Window, expand the [Map Window] node.
Right-click the [Boards] node and pick Properties.
In the Map Boards dialog, enter the settings for the dialog used to select boards at game start.

Right-click the [Map Boards] node, and pick Add Board.

On the Board dialog, enter the details of the new map board.

® N e ok W

Repeat Steps 6-7 for any additional boards as needed.

By default, a module includes a Map Window called Main Map. You must perform the above
procedure for the Main Map (starting from Step 3) before saving the module.

Maps and Boards: Map Options
Map Options

By selecting options for the Map Window, you can customize the behavior of pieces on it. By
selecting different options for different maps, the same piece may behave differently when on
those maps.

Customize a Map Window with any of the options listed here. Each new option added to a Map
Window will create a corresponding node with its own settings.

» Additional Selection Highlighter

27

e At-Start Stack

* Game Piece Layers

* Global Key Command
» Hide Pieces Button

* Image Capture Tool

» Last Move Highlighter
» Line of Sight Thread

* Map Shading

* Mouseover Stack Viewer
e OQverview Window

e Re-center Pieces Button

 Stacking Options
» Text Capture Tool
e Toolbar Menu

* Zoom Capability

Default Nodes: A newly created Map Window includes these nodes by default: [Stacking Options],
[Image Capture Tool], [Mouseover Stack Viewer], [Global Properties], [Additional Selection
Highlighters], and [Last Move Highlighter]. You can configure these nodes, delete unneeded ones,
or freely add new ones to the Map Window.

Recommended Map Options

Although all Map Options have their uses, always consider adding these visibility options to each
Map:
* Mouseover Stack Viewer: (see page 28) Enables viewing of the contents of a stack of pieces.

» Show/Hide Pieces: (see page 26) Enables players to toggle piece visibility, to view the map
directly without moving or interfering with pieces.

* Zoom Capability: (see page 31) Enables re-scaling of the Map, for easier viewing.
Adding Options to a Map
To add an options node to a Map Window,

1. Right-click the selected [Map Window] node, and select an option to add from the context
menu.

2. As the option is added, a dialog box is shown. Specify the option settings in the dialog box.

3. Repeat Steps 1-2 until all desired options are added.

28

Name: |Eird

JActive if Properties Match: |Wpe = Albatross
[]Use Image
Border Color: I Select]
Border Thickness: ‘3
‘ Ok I Cancel | Help | I

Additional Selection Highlighter

An Additional Selection Highlighter enables you to define additional Tpways to highlight the
selected piece on a map. The additional highlighters are drawn only if the selected piece matches
the specified Properties. If a Game Piece matches the

Properties of more than one highlighter, all will be drawn, in addition to the highlighting
color/border specified in the Map’s Properties.

Maps and Boards: Map Options
An Additional Selection Highlighter has these attributes:

* Name: Short name of the component.

» Active if Properties Match: The highlighter will be drawn for all Game Pieces on the map that
match the given Property expression.

» Use Image: Specify an optional image to be overlaid on top of the selected piece. The center of
the image will be offset from the center of the piece by the given number of pixels.

Border Color: The color of the border to be drawn around selected pieces.

Border Thickness: The thickness of the border.
At-Start Stack

An At-Start Stack is a stack of playing pieces that is automatically placed at the beginning of every
game. Once the game begins, the pieces will be in place just as if they had been dragged from the
Game Piece Palette.

First define the name, map, and position of the At-Start Stack, and then create the individual pieces
in the Stack. (You can cut and paste pieces to an At-Start Stack from a Game Piece Palette, or other
At-Start Stack.)

An At-Start Stack could be used for the following:
* Any group of Game Pieces whose quantity is fixed (for example, the number of houses in a

Monopoly set).

* Game Pieces which are found in the same place on the board at the beginning of every game
(and every game scenario). If the starting pieces or their positions will vary based on the
scenario, use a Pre-Defined Setup instead. (See page 97 for more information on Pre-Defined
Setups.)

An At-Start Stack should only include the pieces at a given starting location. For example, chess
pieces start in 32 locations on the board, and so would require 32 different At-Start Stacks, each

29

consisting of 1 piece each.

If Game Pieces are to be drawn randomly from a selection of pieces, use a Deck instead of an At-Start
Stack. See page 74 for more information on Decks.

HUSSia
Mame: |Russian| |
Belongs to Board: |RB Map -
[[] Use Grid Location:

X position: (1603

Y position: [2105

Reposition Stack

[ok | cancat | rep |

An At-Start Stack has these attributes:

* Name: Identifying name of the stack. (Not used during play.)

* Belongs to Board: If a name is selected, the stack will appear on that particular Board. If a
game does not use that Board, then the stack will not appear. If Any is selected, then the stack
will always appear at the given position, regardless of the boards in use.

* Use Grid Location: If selected, you can enter the position of the stack using a descriptive
location name. This can be the name of a grid point or cell number (for example, on a hex grid,
1515 would place the stack in hex 1515.) Otherwise, you must specify X and Y coordinates.

* X, Y position: The position in the Map Window of the center of the Deck. If this stack belongs to
a Board, the position is relative to the Board’s position in the Map Window.

* Location: The location of the stack as a descriptive location label as returned by Grid
Numbering or the name of a Region. The Grid numbering system must provide enough
information to define a specific location on the map (for example, $GridLocation$). However, if
a zone in a Multi-zone Grid does not specify a Grid, the center of the zone will be selected.

EXAMPLE: A strategic game in which a nationality has a fixed force pool of Infantry and Armor
counters can be modeled by making a Map Window representing the force pool, with an At-Start Stack
of Infantry counters and an At-Start Stack of Armor counters.

Editing the Contents of an At-Start Stack

You can make wholesale changes quickly to the entire contents of an At-Start Stack in the Editor. In
the Configuration Window, right-click the [At-Start Stack] node and pick Edit All Contained
Pieces. The Properties dialog for the first piece is displayed, but any changes you make in the
Properties dialog will affect all Game Pieces in the At-Start Stack. Add, remove or edit Traits as
usual, then click Ok. Your changes are applied to all Pieces in the At-Start Stack.

Maps and Boards: Map Options
Game Piece Layer

Using Game Piece Layers (GPLs) enables you to specify that certain Game Pieces will always be
drawn on top of others. GPLs function like a set of transparent sheets, laid in ascending or
descending levels. Pieces on one of the levels will not stack with pieces drawn on other levels above
or below it.

30

After defining the GPLs for a Map, you need to use a Marker Trait to assign each Game Piece (or
Prototype) to a GPL. Pieces with no value for the Marker Trait will be drawn on the topmost layer.
See page 52 for more information on assigning a Game Piece to a Game Piece Layer.

Game Piece Layers

Property name for layer:
Layer Order

Air |
Add] Remove ’ Insert |

Land

Terrain ‘

| Ok] Cancel | Help |

The GPL option has these settings:

* Property Name for Layer: Property name for the Marker Trait used to identify the piecels GPL.
The default value is Layer.

» Layer Order: Click Add to specify the Layer order. Each corresponds to the piecels value for
the Marker Trait used to identify the GPL. Layers are shown in inverted order from their layout
on the map; that is, layers shown at the top of the list are drawn below the ones after them.

Example: A Map has a Game Piece Layer specified with Property name Layer and Layer Order
Terrain, Land, Air. Any piece with a Marker Trait with Property name Layer and value Terrain will be
in the bottom-most layer. The middle layer will contain pieces with the value Land, and the top layer
will contain pieces with the value Air. Pieces with no value for the Layer Property will be in their own
layer, above all three.

The Game Piece Layer Map option is not related to the Layer Trait for Game Pieces. See page 49 for
more information on the Layer Trait.

Game Piece Layer Control

The Game Piece Layer Control adds a button to the Map Window Toolbar that enables you to

activate or deactivate the Game Piece Layers for that map, and to change their relative order. Game
Pieces belonging

Q Game Piece Layer Control EJ
Button text: [Reset Layers

Tooltip text:

Button Icon:

Hotkey:

IAction: |Switch Layer between Active and Inactive [-

Affect which layers? (Use layer names or numbers)
| “|Land
Add l Remove] Insert]

| Ok l Cancel l Help |

to GPLs that have been deactivated are hidden from view until the Layer is activated again.

Each player can activate or deactivate Layers independently, and layer activation is not saved when
the game is saved.

The Game Piece Layer Control has these settings:

31

* Button Text: Text label for the GPL Control button.

» Tooltip Text: Tooltip text displayed on mouseover.

* Button Icon: Icon used for the GPL Control button.

» Hotkey: Keyboard shortcut for the button.

» Action: Action taken when the button is clicked. Choose one of the following:

0. Rotate Layer Order Up/Down will change the relative order of the Layers on the map, moving
each layer up or down by one in the order.

0. Make Layer Active/Inactive will activate or deactivate the specified Layers.

0. Switch Layer between Active and Inactive will toggle the specified layers between active and
inactive.

0. Reset All Layers makes all Layers active and restores them to their default order.
Global Key Command (Map Window Level)

The Global Key Command (GKC) adds a button to the Map Window Toolbar. Clicking the button will
select certain pieces in the Map Window and apply the same keyboard command to all of them
simultaneously.

By default, a Global Key Command assigned to a Map Window will only affect pieces in the Map
Window to which it is assigned. You can specify a new map window by including a CurrentMap
expression in Matching Properties, which will override the default window. (For a GKC that will
affect pieces on any map, use the GKC (Module Level) control, described on page 87.)

The Global Key Command has these settings:
* Description: A description of the action, used for the button’s mouseover tooltip.
Maps and Boards: Map Options

* Key Command: The keyboard command that will be applied to the selected pieces.

* Matching Properties: The command will apply to all pieces on the map that match the given
Property expression.

* Within a Deck, Apply To: Select how this command applies to pieces that are contained within
a Deck.

32

B Clear Fired Status

Description: Clear Fired Status

ey C d: [CTRLF |
atching properties: canfire = true && Fired_Active = true]

Within a Deck, apply to: |All pieces |
Button text: |Fired |
Tooltip text: |Reset Fired Status |

blotkey: [ALTF |
Suppress individual reports?

Report Format: Fire status cleared m -

Ok I Cancel l Help

0. No pieces means that pieces in a Deck ignore the command.

0. All pieces means that the command applies to the entire Deck.

0. _ Fixed number of pieces enables you to specify the number of pieces (drawn from the top)
that the command will apply to.

= Tooltip text: Mouseover hint text for the Toolbar button.
= Button Text: Text for the Toolbar button.

= Button Icon: Icon for the Toolbar button.

= Hotkey: Keyboard shortcut for the Toolbar button.

= Suppress Individual Reports: If selected, then any auto-reporting of the action by
individual pieces by the Report Action Trait will be suppressed.

= Report Format: A Message Format that will be echoed to the Chat window when the
button is pressed.

Commands applied by Global Key Commands will be affected by piece ownership. If the GKC triggers a
command that is restricted by side, the action may not take place as intended when the restricted side
triggers the GKC (by button or other command).

Hide Pieces Button

Clicking a Hide Pieces button will temporarily hide all pieces on the map from the clicking player,
until the button is clicked again. This is useful to get a better look at the game board, such as to read
a map label, terrain hex, or legend. (To make pieces invisible to other players, use the Invisible
Trait.)

The Hide Pieces Button has these settings:

I Hide Pieces Button
Button Text: |Hide Units|

|
[Tooltip text: \Hide all pieces on this map |
Hotkey: [ALT H |

icon when pieces are showing: el Select | Default I

| Ok | Cancel I Help |

* Button Text: The text of the Hide Pieces button to be added to the Toolbar.

33

Tooltip Text: Text shown on mouseover.

Hotkey: Keyboard shortcut for toggling hidden pieces.

Icon When Pieces are Showing: Button shown when pieces are visible.

Icon When Pieces are Hidden: Button shown when pieces are hidden.

If possible, use a different button image for the showing and hidden icons. Players will be able to more
clearly determine when the button has been clicked and when pieces are hidden from view.

Image Capture Tool

The Image Capture tool component adds a button to the Toolbar of the Map Window. Clicking the
button will copy the contents of the Map Window to a PNG image file. Using the Image Capture
Tool, you can take an image of the entire map, shot even if the Map Window is too large to fit
entirely on the screen.

Image Capture Tool

Button Text: |Save Map Picture

The Image Capture Tool has these settings:

* Button Text: Text label for the Image Capture button.
» Tooltip Text: Tooltip text displayed on mouseover.

* Button Icon: Icon used for the Image Capture button.
Maps and Boards: Map Options

* Hotkey: Keyboard shortcut for the button.
Last Move Highlighter

A Last Move Highlighter draws a colored border around the last piece to have been moved, added,
or deleted in a logfile or by an opponent during live play. Clicking on the map clears the highlight.

The Last Move Highlighter has these settings:

* Enabled: Enabled by default. If selected, the highlighter is in effect for the last piece to be
moved, added, or deleted from a logfile and live play.

e Color: Color of the border shown.

» Thickness: Border thickness, in pixels.

B Last Move Highlighter @
[v] Enabled?

olor: Select
hickness: |2

| Ok I Cancel I Help |

34

Line of Sight Thread

A Line of Sight Thread adds a button to the Toolbar of the Map Window. Clicking the button will
enable a player to drag the mouse cursor between any two points in the Map Window, drawing a
line between those two points to indicate line of sight or range.

The Line of Sight Thread has these settings:

* Button Text: The label on the button in the Map Window Toolbar.

* Tooltip Text: Tooltip text for the button in the Map Window Toolbar.
* Button Icon: Icon for the button in the Map Window Toolbar.

» Hotkey: Specifies a keyboard shortcut for the button.

* Report Format: A Message Format that specifies the report to the chat window when the LOS
button is used. If blank, no report is sent to the chat window when drawing a thread.

* Persistence: Select one of the following for the persistence of the LOS thread.

0. Ctrl-Click & Drag: The thread will only persist when the drawing player holds down Ctrl-Click
and draws the thread.

0. Never: The thread will only persist as long as the drawing player(s finger is on the mouse
button.
0. _Always: The thread will persist on the board until a new thread is drawn.

= Button Icon When LOS Persisting: The button icon shown when the LOS thread is
persisting, in the circumstances defined under Persistence.

= Visible to Opponent: Select whether a drawn thread will
be visible to the opponent: When Persisting, Never, Always.
» Force Start of Thread to Snap to Grid: If selected, and a Grid is defined for the map, the thread

will always begin in the center of a Grid cell.

* Force End of Thread to Snap to Grid: If selected, and a Grid is defined for the map, the thread
will always end in the center of a Grid cell.

* Draw Range: If selected, draws the range between the two points, in hexes or squares, as
appropriate for the board in use.

 Pixels Per Range Unit: If drawing the range on a board without a Grid, this determines how
many pixels on the screen equal a single unit of range.

* Round Fractions: For distances that are a fraction of a range unit, specify whether to round
fractions up, down, or to the nearest whole number.

» Hide Pieces While Drawing: If selected, then all Game Pieces in the map will be hidden (or
transparent) while the thread is being drawn.

35

B Line of Sight Thread
Button text: |Line of Sight

ooltip text: ‘Sho‘w LOS Thread

| Select | Defaur

Report Format: |$maygr8\de$ Checks LOS from $Frnancatinn$H ‘

Persistence: |Ctrl-Click & Drag] - |
Button lcon when LOS persisting: Select Default

\Visible to Opponent: ‘\Mlen Persisting | -

Force start of thread to snap to grid?
Force end of thread to snap to grid?
[v]| Draw Range?

Pixels per range unit (0 to use Grid calculation): [0 \I
[Round fractions: |Meﬂresl whole number s
[v] Hide Pieces while drawing?

Opacity of hidden pieces (0-100%): [30 | §
[Thread color: I Select |

| Ok | Cancel i Help |

Maps and Boards: Map Options
* Opacity Of Hidden Pieces: Set the transparency of Game Pieces, as a percentage of original
opacity, while the thread is being drawn. 0 is completely invisible, 100 is completely opaque.

» Thread Color: Specifies the color the thread on the screen. If set to null (by clicking the Select
button and then the Cancel button in the color-choosing dialog), then a Preferences option will
determine the color of the thread at game time.

Map Shading

The Map Shading option applies a semi-transparent solid color or image tiling to the Map. In
background mode, Map Shading can be used to overlay a repeating image over solid-color boards.
In foreground mode, the area is determined by the pieces on the map that name this Map Shading
in an Area of Effect Trait.

The Map Shading option has these settings:

* Name: A short name of this shading for reference by pieces with the Area of Effect Trait.

* Shading Always On: If selected, then the shading is always drawn. If not selected, then visibility
is controlled by a button in the Map Window Toolbar.

» Shading Starts Turned On: If selected, then the shading will begin visible when a game is
loaded.

e Button Text: Text for the Toolbar button.
e Button Icon: Icon for the Toolbar button.
* Hotkey: Keyboard shortcut for the Toolbar button.

* All Boards In Map Get Shaded: Allows you to select which Boards in the map to apply the
shading to.

» Type: If set to Background then the shaded area includes the entire board, minus the areas
attached to any Area of Effect Traits. If set to Foreground, then the shaded area includes only the
areas attached to Area of Effect Traits.

* Draw Shade On Top Of Counters: If selected, then the shading will be drawn over any counters
on the map. Otherwise, it will be drawn underneath all counters.

36

Shade Pattern: Choose between 100/75/50/25% hatch patterns, or choose a custom image.
* Color: The color of the shading (if not using a custom image).

* Opacity: The opacity of the shading. 0 is invisible, 100 is completely opaque.

Border: If selected, will draw a border around the shading area. You can specify the thickness,
color, and opacity of the border.

B shading X
MName: |Shading |
[_] Shading Always On?

[_] Shading Starts turned on?

Button text: [Shade

IToottip Text: [Shading

Button lcon:

Hotkey: | |
Al boards in map get Shaded? |Yes | -

IType: |Background |V|
[] Draw Shade on top of Counters?
[shade pattern: [25% |~
Color: I Select |
lOpacity(3)|50
Border?
Border Color: Select
Border Width: |1
Border npacﬂn%}h [u]i]
| Ok | Cancel | Help |

Mouseover Stack Viewer

A Mouseover Stack Viewer displays the contents of a stack when a mouse cursor is moved over it,
after a specified delay. The Viewer can also display descriptive text about the pieces in the stack.
(Note that a OstackO can consist of a single piece or multiple pieces.)

The option has these settings:

* Recommended Delay Before Display: When the mouse has been stationary for this many
milliseconds, the viewer will appear. (Individual users can override this by choosing a setting in
Preferences. See the VASSAL Userls Guide for more information on setting Preferences.)

* Keyboard Shortcut to Display: Players may display the viewer without waiting by typing this
keyboard shortcut. This can be disabled in the preferences.

* Background Color: Pieces and text are drawn against a background of this color.

Border/Text Color: Color of any text drawn, and the border around the overall viewer.
Maps and Boards: Map Options

* Display When At Least This Many Pieces Will Be Included: Minimum number of units in a
stack that will trigger the viewer. You can set this to 1 to view individual pieces. If set to 0, then
the viewer will display even if the location is empty.

* Always Display When Zoom Level Is Less Than: Regardless of the above Display When At
Least This Many... setting, the viewer will also display when the map’s Zoom level is less than
this number.

* Draw Pieces: If selected, then the stacked pieces will be depicted in the viewer.

37

* Draw Pieces Using Zoom Factor: The magnification factor to use to draw the pieces in the
viewer.

Width Of Gap Between Pieces: Empty space in pixels to place between each drawn piece.

 Display Text: If selected, then the viewer will show summary text and some individualized text
for each piece. If selected, specify each of these values:

o. Font Size: Size of the text shown in the viewer.

0. _ Summary Text Above Pieces: A Message Format specifying the text to display above the
drawn pieces in the viewer. By default, this is set to $LocationName$. In addition to
standard Properties, you can include a Property with the name $sum(PropertyName)$
where (PropertyName) is a Property defined on a Game Piece. The numeric values of this
Property for all included pieces will be substituted.

Text Below Each Piece: A Message Format specifying the text to display below each
included piece.

Include Individual Pieces: Specifies how pieces are to be selected for inclusion in the
viewer. You may restrict the pieces according to the Game Piece Layer that they belong.
Alternatively, you may specify the value of a Property.

Include Non-Stacking Pieces: If selected, then non-stacking pieces are eligible for
inclusion in the viewer.

Show Pieces In Unrotated State: If selected, then pieces that can rotate are drawn in
the mouseover as they look when not rotated.

Include Top Piece In Deck: If selected, then the top piece of a Deck will be shown in the
Viewer.

0Offboardl Pieces

By default, a Mouseover Stack Viewer will display each stack showing the value of each piecels
current location above each piece. If no Grid is defined for the map, the pieces will be shown as
Ooffboardl.

To change the display of the word Ooffboard[, do one of the following:

* Add a Grid to the map. The Viewer will display the stack0s current location.

* In the Mouseover Stack Viewer dialog, select Display Text. In Summary Text Above Pieces,
delete the Property name $LocationName$.

e As above, but instead of $LocationName$, substitute the name of a different Game Piece
Property to be displayed.

Showing the Number of Items in a Stack

You can set a Stack Viewer to show the number of items contained in a stack.

1. Set a Marker Trait on all units you want to count. Name the Marker Trait UnitCount, and set the
Value to 1.

2. Create a Stack Viewer for the Map Window. In Summary Text Above Pieces, select

38

$sum(PropertyName)$. In the box, replace PropertyName with UnitCount (so it shows
$sum(UnitCount)$). On mouseover, the Viewer will now display the total Unit Count of all pieces
in the stack.

Multiple Stack Viewers

A Map Window can have any number of Stack Viewers, each with its own settings. You can use
different Stack Viewers to view pieces of different types, on different Game Piece Layers, or with
different attributes, and display them in different ways.

For example, a playerlls Map Window contains a stack of game pieces, as well as a stack of game
money. To prevent them being stacked together, each of these piece types is assigned to a different

Game Piece Layer. In addition, the money pieces each include a Marker Trait, Value, containing the
value of the given piece.

* One viewer is set to display the game pieces, and has Draw Pieces enabled, with each piecels
Basic Name displayed in a small label below. For Include Individual Pieces, from layers other
than those listed is selected, and Money is entered. This viewer will now show any stack not on
the Money layer, and display all the pieces in the stack.

Maps and Boards: Map Options

* The second viewer has Draw Pieces disabled. In Summary Text Above Pieces, the setting
$sum(Value)$ is entered. For Include Individual Pieces, from listed layers is selected, and
Money is entered. Now, when mousing over a stack of money, the total value of the money stack,
but not the money pieces themselves, will be displayed.

Overview Window

The Overview Window adds a separate window that will be displayed whenever the main Map
Window is displayed. The additional window will contain a view of the entire playing area at a
smaller scale than displayed in the main Map Window. The area of the map currently visible in the
Map Window is highlighted in the overview map with a colored rectangle. A player may click on
the Overview window to center the Map Window at the point clicked on.

Overview Window
ooltip text Show/Hide overview window
Button text|Map Ovewiewi

Button icon [- Default
Hotkey to show/ide|CTRL SHIFT O

IScale factor|D. 19444444 \
\Visible rectangle highlight color| Select

Ok Cancel Help

The scale of the overview window relative to the Map Window can be specified in the Scale Factor

Property. You may also specify the color of the rectangle indicating the area visible in the main Map
Window.

The option has these settings:

* Tooltip Text: Tooltip shown when the cursor hovers over the button.

39

Button Text: Overview window button text.

Button Icon: Overview window button icon.

Hotkey to Show/Hide: Keyboard shortcut to toggle Overview window.

Scale Factor: Size of the Overview window compared to the current map view. For example, if
the Scale Factor is 0.2, then the Overview window will show the full-scale map image at 20%
size.

Visible Rectangle Highlight Color: Color of the rectangle shown around the overview.

Re-center Pieces Button

B Recenter Pieces Button @
Button text: |Recenter |
Tooltip text: |centera|\ pieces

|Button icon: E‘ Select] Default

Hotkey: |F3| |
I Ok l Cancel I Help ‘

A Re-Center Pieces button adds a button to the Map Window Toolbar button, appearing on the Main
Controls toolbar, which will shift the position of all pieces on the map such that they are centered
on the middle of the map as much as possible. This is useful for games where there are no absolute
terrain features, such as many air, naval, and space combat games.

The option has these settings:

* Button Text: Text label for the button.
* Tooltip Text: Tooltip text displayed on mouseover.
* Button Icon: Icon used for the button.
* Hotkey: Keyboard shortcut for the button.
Because the size and layout of grids may vary widely, the Re-Center Pieces button may not place pieces

exactly in the center of some grids, and some manual adjustment by players may be needed after Ore-
centeringl.

Stacking Options

Stacking Options determine how stacking is handled in this Map Window. The option may not be
deleted.

Stacking options

[Disable stacking?

Horizontal separation when expanded: |25
Wertical separation when expanded: |25

Horizontal separation when not expanded: |1 2
Wertical separation when not expanded: |12

iColor of pieces when not expanded: Séled

| Ok | Cancel | Help |

» Disable Stacking: If selected, then pieces will never form stacks in this window.

* Horizontal Separation When Expanded: The distance in pixels from the left edge (right edge if

40

negative) of a Game Piece in a stack to the edge of the piece above it when the stack is
expanded.

* Vertical Separation When Expanded: The distance in pixels from the bottom edge (top edge if
negative) of a Game Piece in a stack to the edge of the piece above it when the stack is
expanded.

* Horizontal Separation When Not Expanded: The distance in pixels from the left edge (right
edge if negative) of a Game Piece in a stack to the edge of the piece above it when the stack is
compact.

Maps and Boards: Map Options

* Vertical Separation When Not Expanded: The distance in pixels from the bottom edge (top
edge if negative) of a Game Piece in a stack to the edge of the piece above it when the stack is
compact.

» Color Of Pieces When Not Expanded: If set, then pieces below the top piece in a compact stack
will be drawn as plain squares of this color and a black border. If not set (click Select and
cancel the color-selection dialog) then pieces will be drawn normally.

Text Capture Tool

B Actions |
Button text: Actions |

Tooltip Text: |Displays Action Options [

Button Icon: Select

Hotkey: | §
Menu Entries

Remove Info Counters
Add | Remove I Insert | Un-Disrupt

[Ok l Cancel] Help |

The Text Capture Tool adds a button to the Map Window Toolbar. Clicking the button will write a
plain text summary of the contents of the map to a file, using the names assigned to the counters
and the appropriate numbering of the board’s Grid.

The option has these settings:

* Button Text: Text label for the Text Capture button.

Tooltip Text: Tooltip text displayed on mouseover.
* Button Icon: Icon used for the Text Capture button.

* Hotkey: Keyboard shortcut for the button.

Toolbar Menu

The Toolbar Menu component enables you to group buttons from the Toolbar of the Main Controls
window or a Map window into a drop-down menu on the Toolbar. Each button named in this
component will be removed from the Toolbar and instead appear as a menu item in the drop-down
menu.

* Button Text: The text of the button to be added to the Toolbar. Clicking the button will reveal

41

the drop-down menu.

* Button Icon: Icon for the Toolbar button.

» Hotkey: Keyboard shortcut for revealing the drop-down menu.

* Menu Entries: Enter the text of the buttons that you wish to move to the drop-down menu. The
menu item will have the same text. If the button uses an icon, the menu item will also use it.

Zoom Capability

Zoom capability enables re-scaling of a Board. You can add up to 3 buttons, for Zoom In, Zoom Out,
and Zoom Select.

Zoom levels are defined as decimal numbers, each corresponding to a percentage of the full-scale
map. For example, a 1000-pixel wide map, viewed at a Zoom level of .25 (25%), would appear to be
250 pixels across.

You can define an initial Zoom level. By default, this is 1.0 (which corresponds to a magnification
factor of 100%), but you can select a different value. Zoom is defined in additional Zoom levels,
which by default are defined at .39 (39%), .625 (62.5%), 1.0, and 1.6 (160%). However, you may add
new levels to the list, or remove the defaults.

* Clicking the Zoom In button moves the current Zoom factor up the list of Zoom levels, from the
initial value to higher values, making the map larger.

* Clicking the Zoom Out button moves the current Zoom factor down the list of Zoom levels, from
the initial value to lower values, making the map smaller.

* Clicking Zoom Select enables the user to simply select a Zoom level from the defined levels.
The option has these settings:

* Preset Zoom Levels: A set of preset Zoom levels is listed. Each is identified by its scaling factor.
For example, a Zoom level of .625 will show the board at 62.5% actual size. (A 1000 pixel-wide
board would appear as 625 pixels across.) You can add a new level by entering a scaling factor
in the text box and clicking Add. To remove a pre-set level, select it from the list and click
Remove. To set the initial Zoom level (the one players see at game start), select the desired level
and click Set Initial. The initial level will be marked with an asterisk (*).

* Zoom In/Out/Select Tooltip Text: Tooltip text for the button.
e Zoom In/Out/Select Button Text: Text label for the Zoom button.
e Zoom In/Out/Select Icon: Icon used for the Zoom button.

* Zoom In/Out/Select Hotkey: Keyboard shortcut used for the Zoom button.
Maps and Boards: Map Grids

Since the Zoom In and Zoom Out button functions are both duplicated b the Zoom Select button,
you may wish to omit these buttons. To omit a particular Zoom button from the Map Toolbar, leave
the text label and tooltip for the button blank. Then, next to the Icon for the button you do not wish
to include, click Select, and then click Cancel. The button will not be displayed.

For example, to exclude the Zoom In button, next to Zoom In Icon, click Select, and then click

42

Cancel. No Zoom In button will be included.
Map Grids

Map Grids help regulate movement and piece location. You can add one of the following types of
Grid to a board: Hex, Rectangular, Irregular, and Multi-zoned.

Use of a Map Grid is optional. Although VASSAL Map Grids can help keep piece placement and
movement tidy, hex and rectangular Grids in VASSAL are really most useful at the tactical scale,
where range between hexes or squares may a factor in gameplay, and a Line of Sight Thread is used
to track distances. For other games, such as those at the strategic scale, the printed grid included in
the map image is often all that is necessary.

If you choose add a map grid to a board, each board in the same map window must have its own
Grid, and each board may only have one grid (exception: see Multi-Zoned Grids, below.)

Like other components, map Grids can be copied and pasted from one Board to another.

By default, if a hex or rectangular Grid is imposed, pieces will snap to them, in which case all pieces
will align neatly with the Grid cells. You can also enable snap for Irregular grids.

To turn off snap, choose cell edges or vertices as legal locations. (You can also have some pieces
ignore snap by assigning them the Does Not Stack Trait. See page 46 for more information.)

Hex Grid

A Hex Grid is a standard hexagonal Grid for regulating movement on a Board. This type of Grid has
these options:

B Hex Grid X

[Sideways (hexrows go horizontal)?
DCoffset: 79

I offset: |22

Hex Height: 1698

Hex Width: |146.15829323057013

[] Edges are legal locations?

|| Vertices are legal locations?
Show grid?

["] Draw center dots?

jColor: I Select

[Edit Grid
| 0Ok [Cancel Help I

» Sideways: Check this box to make the hex rows of the Grid run right-to-left instead of top-to-
bottom. (Setting the Grid to be Sideways switches the meanings of horizontal/vertical and x/y
below.)

* X,Y offset: The horizontal and vertical position of the center of the first hex of the Grid.

* Hex Height/Width: In pixels from hex center to hex center. If you specify only the height, the
width will adjust, or you can create oblong hexes by also specifying a width

* Edges/Vertices are Legal Locations: If selected, pieces can be placed on cell edges or corners,
instead of only at hex centers.

* Show Grid: If selected, then the Grid will be drawn over the Board image using the specified
color.

* Draw Center Dots: If selected, a dot will be drawn at the center of each hex in the specified

43

color. You can add numbering to this type of Grid; see Grid Numbering on page 34.

Rectangular Grid

A standard rectangular Grid for regulating movement on a Board. This type of Grid has these
option